Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation.

Identifieur interne : 000A31 ( Main/Exploration ); précédent : 000A30; suivant : 000A32

Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation.

Auteurs : Sangwoon Chung [États-Unis] ; Isaac Kirubakaran Sundar ; Hongwei Yao ; Ye-Shih Ho ; Irfan Rahman

Source :

RBID : pubmed:20472709

Descripteurs français

English descriptors

Abstract

Glutaredoxin 1 (Glrx1) is a small dithiol protein that regulates the cellular redox state and redox-dependent signaling pathways via modulation of protein glutathionylation. IkappaB kinase (IKK), an essential enzyme for NF-kappaB activation, can be subjected to S-glutathionylation leading to alteration of its activity. However, the role of Glrx1 in cigarette smoke (CS)-induced lung inflammation and chromatin modifications are not known. We hypothesized that Glrx1 regulates the CS-induced lung inflammation and chromatin modifications via differential regulation of IKKs by S-glutathionylation in mouse lung. Glrx1 knockout (KO) and wild-type (WT) mice were exposed to CS for 3 days and determined the role of Glrx1 in regulation of proinflammatory response in the lung. Neutrophil influx in bronchoalveolar lavage fluid and proinflammatory cytokine release in lung were increased in Glrx1 KO mice compared with WT mice exposed to CS, which was associated with augmented nuclear translocation of RelA/p65 and its phospho-acetylation. Interestingly, phosphorylated and total levels of IKKalpha, but not total and phosphorylated IKKbeta levels, were increased in lungs of Glrx1 KO mice compared with WT mice exposed to CS. Ablation of Glrx1 leads to increased CS-induced IKKbeta glutathionylation rendering it inactive, whereas IKKalpha was activated resulting in increased phospho-acetylation of histone H3 in mouse lung. Thus, targeted disruption of Glrx1 regulates the lung proinflammatory response via histone acetylation specifically by activation of IKKalpha in response to CS exposure. Overall, our study suggests that S-glutathionylation and phosphorylation of IKKalpha plays an important role in histone acetylation on proinflammatory gene promoters and NF-kappaB-mediated abnormal and sustained lung inflammation in pathogenesis of chronic inflammatory lung diseases.

DOI: 10.1152/ajplung.00426.2009
PubMed: 20472709
PubMed Central: PMC2928604


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation.</title>
<author>
<name sortKey="Chung, Sangwoon" sort="Chung, Sangwoon" uniqKey="Chung S" first="Sangwoon" last="Chung">Sangwoon Chung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Dept. of Environmental Medicine, Univ. of Rochester Medical Center, Rochester, NY 14642, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Environmental Medicine, Univ. of Rochester Medical Center, Rochester, NY 14642</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sundar, Isaac Kirubakaran" sort="Sundar, Isaac Kirubakaran" uniqKey="Sundar I" first="Isaac Kirubakaran" last="Sundar">Isaac Kirubakaran Sundar</name>
</author>
<author>
<name sortKey="Yao, Hongwei" sort="Yao, Hongwei" uniqKey="Yao H" first="Hongwei" last="Yao">Hongwei Yao</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Rahman, Irfan" sort="Rahman, Irfan" uniqKey="Rahman I" first="Irfan" last="Rahman">Irfan Rahman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20472709</idno>
<idno type="pmid">20472709</idno>
<idno type="doi">10.1152/ajplung.00426.2009</idno>
<idno type="pmc">PMC2928604</idno>
<idno type="wicri:Area/Main/Corpus">000A11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A11</idno>
<idno type="wicri:Area/Main/Curation">000A11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A11</idno>
<idno type="wicri:Area/Main/Exploration">000A11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation.</title>
<author>
<name sortKey="Chung, Sangwoon" sort="Chung, Sangwoon" uniqKey="Chung S" first="Sangwoon" last="Chung">Sangwoon Chung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Dept. of Environmental Medicine, Univ. of Rochester Medical Center, Rochester, NY 14642, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Environmental Medicine, Univ. of Rochester Medical Center, Rochester, NY 14642</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sundar, Isaac Kirubakaran" sort="Sundar, Isaac Kirubakaran" uniqKey="Sundar I" first="Isaac Kirubakaran" last="Sundar">Isaac Kirubakaran Sundar</name>
</author>
<author>
<name sortKey="Yao, Hongwei" sort="Yao, Hongwei" uniqKey="Yao H" first="Hongwei" last="Yao">Hongwei Yao</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Rahman, Irfan" sort="Rahman, Irfan" uniqKey="Rahman I" first="Irfan" last="Rahman">Irfan Rahman</name>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Lung cellular and molecular physiology</title>
<idno type="eISSN">1522-1504</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Bronchoalveolar Lavage Fluid (cytology)</term>
<term>Glutaredoxins (biosynthesis)</term>
<term>Glutaredoxins (deficiency)</term>
<term>Glutaredoxins (pharmacology)</term>
<term>Glutathione (metabolism)</term>
<term>Histones (metabolism)</term>
<term>I-kappa B Kinase (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>NF-kappa B (metabolism)</term>
<term>Pneumonia (etiology)</term>
<term>Pneumonia (pathology)</term>
<term>Pneumonia (prevention & control)</term>
<term>Smoking (adverse effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétylation (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Fumer (effets indésirables)</term>
<term>Glutarédoxines (biosynthèse)</term>
<term>Glutarédoxines (déficit)</term>
<term>Glutarédoxines (pharmacologie)</term>
<term>Glutathion (métabolisme)</term>
<term>Histone (métabolisme)</term>
<term>I-kappa B Kinase (métabolisme)</term>
<term>Liquide de lavage bronchoalvéolaire (cytologie)</term>
<term>Pneumopathie infectieuse (anatomopathologie)</term>
<term>Pneumopathie infectieuse (prévention et contrôle)</term>
<term>Pneumopathie infectieuse (étiologie)</term>
<term>Souris (MeSH)</term>
<term>Souris knockout (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="adverse effects" xml:lang="en">
<term>Smoking</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Pneumopathie infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Liquide de lavage bronchoalvéolaire</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Bronchoalveolar Lavage Fluid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Fumer</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Pneumonia</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Histones</term>
<term>I-kappa B Kinase</term>
<term>NF-kappa B</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de transcription NF-kappa B</term>
<term>Glutathion</term>
<term>Histone</term>
<term>I-kappa B Kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Pneumonia</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Pneumonia</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Pneumopathie infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Pneumopathie infectieuse</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Animals</term>
<term>Mice</term>
<term>Mice, Knockout</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Animaux</term>
<term>Souris</term>
<term>Souris knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin 1 (Glrx1) is a small dithiol protein that regulates the cellular redox state and redox-dependent signaling pathways via modulation of protein glutathionylation. IkappaB kinase (IKK), an essential enzyme for NF-kappaB activation, can be subjected to S-glutathionylation leading to alteration of its activity. However, the role of Glrx1 in cigarette smoke (CS)-induced lung inflammation and chromatin modifications are not known. We hypothesized that Glrx1 regulates the CS-induced lung inflammation and chromatin modifications via differential regulation of IKKs by S-glutathionylation in mouse lung. Glrx1 knockout (KO) and wild-type (WT) mice were exposed to CS for 3 days and determined the role of Glrx1 in regulation of proinflammatory response in the lung. Neutrophil influx in bronchoalveolar lavage fluid and proinflammatory cytokine release in lung were increased in Glrx1 KO mice compared with WT mice exposed to CS, which was associated with augmented nuclear translocation of RelA/p65 and its phospho-acetylation. Interestingly, phosphorylated and total levels of IKKalpha, but not total and phosphorylated IKKbeta levels, were increased in lungs of Glrx1 KO mice compared with WT mice exposed to CS. Ablation of Glrx1 leads to increased CS-induced IKKbeta glutathionylation rendering it inactive, whereas IKKalpha was activated resulting in increased phospho-acetylation of histone H3 in mouse lung. Thus, targeted disruption of Glrx1 regulates the lung proinflammatory response via histone acetylation specifically by activation of IKKalpha in response to CS exposure. Overall, our study suggests that S-glutathionylation and phosphorylation of IKKalpha plays an important role in histone acetylation on proinflammatory gene promoters and NF-kappaB-mediated abnormal and sustained lung inflammation in pathogenesis of chronic inflammatory lung diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20472709</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>08</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1504</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>299</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Lung cellular and molecular physiology</Title>
<ISOAbbreviation>Am J Physiol Lung Cell Mol Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation.</ArticleTitle>
<Pagination>
<MedlinePgn>L192-203</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajplung.00426.2009</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin 1 (Glrx1) is a small dithiol protein that regulates the cellular redox state and redox-dependent signaling pathways via modulation of protein glutathionylation. IkappaB kinase (IKK), an essential enzyme for NF-kappaB activation, can be subjected to S-glutathionylation leading to alteration of its activity. However, the role of Glrx1 in cigarette smoke (CS)-induced lung inflammation and chromatin modifications are not known. We hypothesized that Glrx1 regulates the CS-induced lung inflammation and chromatin modifications via differential regulation of IKKs by S-glutathionylation in mouse lung. Glrx1 knockout (KO) and wild-type (WT) mice were exposed to CS for 3 days and determined the role of Glrx1 in regulation of proinflammatory response in the lung. Neutrophil influx in bronchoalveolar lavage fluid and proinflammatory cytokine release in lung were increased in Glrx1 KO mice compared with WT mice exposed to CS, which was associated with augmented nuclear translocation of RelA/p65 and its phospho-acetylation. Interestingly, phosphorylated and total levels of IKKalpha, but not total and phosphorylated IKKbeta levels, were increased in lungs of Glrx1 KO mice compared with WT mice exposed to CS. Ablation of Glrx1 leads to increased CS-induced IKKbeta glutathionylation rendering it inactive, whereas IKKalpha was activated resulting in increased phospho-acetylation of histone H3 in mouse lung. Thus, targeted disruption of Glrx1 regulates the lung proinflammatory response via histone acetylation specifically by activation of IKKalpha in response to CS exposure. Overall, our study suggests that S-glutathionylation and phosphorylation of IKKalpha plays an important role in histone acetylation on proinflammatory gene promoters and NF-kappaB-mediated abnormal and sustained lung inflammation in pathogenesis of chronic inflammatory lung diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chung</LastName>
<ForeName>Sangwoon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Environmental Medicine, Univ. of Rochester Medical Center, Rochester, NY 14642, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sundar</LastName>
<ForeName>Isaac Kirubakaran</ForeName>
<Initials>IK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Hongwei</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ho</LastName>
<ForeName>Ye-Shih</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rahman</LastName>
<ForeName>Irfan</ForeName>
<Initials>I</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30-ES-01247</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-HL-085613</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Lung Cell Mol Physiol</MedlineTA>
<NlmUniqueID>100901229</NlmUniqueID>
<ISSNLinking>1040-0605</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.10</RegistryNumber>
<NameOfSubstance UI="C496564">Chuk protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.10</RegistryNumber>
<NameOfSubstance UI="D051550">I-kappa B Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001992" MajorTopicYN="N">Bronchoalveolar Lavage Fluid</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051550" MajorTopicYN="N">I-kappa B Kinase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011014" MajorTopicYN="N">Pneumonia</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012907" MajorTopicYN="N">Smoking</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20472709</ArticleId>
<ArticleId IdType="pii">ajplung.00426.2009</ArticleId>
<ArticleId IdType="doi">10.1152/ajplung.00426.2009</ArticleId>
<ArticleId IdType="pmc">PMC2928604</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2007 Apr 27;282(17):12467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(6):3159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 20;282(29):21308-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17537731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Nov 1;43(9):1299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20820-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Apr;10(4):799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18220485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2008 Feb;44(2):261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17976641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Mar 19;27(6):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18309294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2008 May;172(5):1222-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2008 Jun;38(6):689-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18239189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2008 Jun;294(6):L1174-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 May 31;25(3):332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2008 Jul;39(1):7-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18239191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Dec 15;45(12):1714-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18929643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jan 26;184(2):241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):4760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2009 Mar;150(3):1122-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18988672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2009 Apr;40(4):464-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2009 May 1;6(3):249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19387025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Jun 1;46(11):1534-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Rhinol Allergy. 2009 May-Jun;23(3):288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19490803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2009 Jul;175(1):36-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2009 Aug;19(8):404-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2009 Nov;212(Pt 22):3612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2009 Dec;89(6):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 May 1;28(9):1405-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2001 Mar;26(3):186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11246025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2001 Sep;15(11):1865-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Mar;9(3):625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2002 Sep;20(3):556-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12358328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Dec 2;21(23):6539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 5;423(6940):655-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8945-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15184672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2004 Aug;35(8):1000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 1985 Dec;64:111-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3007083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Dec 8;1436(1-2):245-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9838145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 1999 Feb;159(2):473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Apr 9;284(5412):309-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10195894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Sep;25(18):7966-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16135789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2006 Feb 28;71(5):551-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2006 Apr;27(4):811-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2006 Jul;291(1):L46-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets. 2006 Jun;7(6):661-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 7;281(27):18684-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 30;25(51):6717-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17072324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2006;7:133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2007;14(2):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Feb 2;100(2):152-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17272816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L567-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
<name sortKey="Rahman, Irfan" sort="Rahman, Irfan" uniqKey="Rahman I" first="Irfan" last="Rahman">Irfan Rahman</name>
<name sortKey="Sundar, Isaac Kirubakaran" sort="Sundar, Isaac Kirubakaran" uniqKey="Sundar I" first="Isaac Kirubakaran" last="Sundar">Isaac Kirubakaran Sundar</name>
<name sortKey="Yao, Hongwei" sort="Yao, Hongwei" uniqKey="Yao H" first="Hongwei" last="Yao">Hongwei Yao</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Chung, Sangwoon" sort="Chung, Sangwoon" uniqKey="Chung S" first="Sangwoon" last="Chung">Sangwoon Chung</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20472709
   |texte=   Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20472709" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020